Heuristics as a special case of Bayesian Inference

نویسندگان

  • Paula Parpart
  • Matt Jones
  • Bradley C. Love
چکیده

Abstract: Probabilistic inference models (e.g. Bayesian models) are often cast as being rational and at odds with simple heuristic approaches. We show that prominent decision heuristics, take-the-best and tallying, are special cases of Bayesian inference. We developed two Bayesian learning models by extending two popular regularized regression approaches, lasso and ridge regression. The priors of these Bayesian models match the environmental structures necessary for tallying and take-thebest to succeed. Provably, the Bayesian models become equivalent to the heuristics as their priors become more extreme; hence they subsume heuristics and standard linear regression. In a re-analysis of datasets favouring heuristic approaches, we show that our Bayesian extension of ridge regression outperforms tallying and linear regression. A similar result holds for our Bayesian extension of lasso regression and the take-the-best heuristic. This indicates that true environmental structure and potentially psychological processing often lie somewhere between the assumptions of heuristic and standard regression approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method

In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...

متن کامل

Cost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors

Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...

متن کامل

A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014